Pressure anisotropy in global magnetospheric simulations: Coupling with ring current models

نویسندگان

  • X. Meng
  • G. Tóth
  • A. Glocer
  • M.-C. Fok
  • T. I. Gombosi
چکیده

[1] We have recently extended the global magnetohydrodynamic (MHD) model BATS-R-US to account for pressure anisotropy. Since the inner magnetosphere dynamics cannot be fully described even by anisotropic MHD, we coupled our anisotropic MHD model with two inner magnetospheric models: the Rice Convection Model (RCM) and the Comprehensive Ring Current Model (CRCM). The coupled models provide better representations of the near-Earth plasma, especially during geomagnetic storms. In this paper, we present the two-way coupling algorithms with both ring current models. The major difference between these two couplings is that the RCM assumes isotropic and constant pressures along closed field lines, while the CRCM resolves pitch angle anisotropy. For model validation, we report global magnetosphere simulations performed by the coupled models. The simulation results are compared to the results given by the coupled isotropic MHD and ring current models. We find that in the global MHD simulations coupled with ring current models, pressure anisotropy results in a thinner magnetosheath, a shorter tail, a much smaller Earthward plasma jet from the tail reconnection site, and is also important in controlling the magnetic field configuration. The comparisons with satellite data for the magnetospheric event simulations show improvements on reproducing the measured tail magnetic field and inner magnetospheric flow velocity when including pressure anisotropy in the ring current model coupled global MHD model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure anisotropy in global magnetospheric simulations: A magnetohydrodynamics model

[1] In order to better describe the space plasmas where pressure anisotropy has prominent effects, we extend the BATS-R-US magnetohydrodynamics (MHD) model to include anisotropic pressure. We implement the anisotropic MHD equations under the double adiabatic approximation with an additional pressure relaxation term into BATS-R-US and perform global magnetospheric simulations. The results from i...

متن کامل

Coupling of a global MHD code and an inner magnetospheric model: Initial results

[1] This paper describes the coupling of BATS-R-US (Block Adaptive Tree Solar-wind Roe-type Upwind Scheme), a magnetohydrodynamics (MHD) code representing the Earth’s global magnetosphere and its coupling to the ionosphere and solar wind, and the Rice Convection Model (RCM), which represents the inner magnetosphere and its coupling to the ionosphere. The MHD code provides a time-evolving magnet...

متن کامل

Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations

[1] We present results from Lyon-Fedder-Mobarry (LFM) global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere interaction. We use these simulations to investigate the role that solar wind dynamic pressure fluctuations play in the generation of magnetospheric ultra-low frequency (ULF) pulsations. The simulations presented in this study are driven with idea...

متن کامل

COUPLING MODEL FOR MULTI-COMPONENT GAS PERMEATION PROCESS

A gas permeation model (Coupling Model) has been developed which has the flexibility to be used for different membrane module configurations. The aim of this work is to predict the performance of a single stage gas separation process using membranes and provide a comprehensive description of process parameters like flow rates, composition, stage cut and stream pressure. The significant feature ...

متن کامل

3-D force-balanced magnetospheric configurations

The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has, however, eluded the community, as most in situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013